71 research outputs found

    Through the Eyes of Neglect Patients: A Preliminary Eye-Tracking Study of Unilateral Spatial Neglect

    Full text link
    Llorens Rodríguez, R.; Noe, E. (2016). Through the Eyes of Neglect Patients: A Preliminary Eye-Tracking Study of Unilateral Spatial Neglect. Journal of Neuropsychiatry and Clinical Neurosciences. 28(1):8-9. doi:10.1176/appi.neuropsych.15060156S8928

    Intervenciones basadas en realidad virtual para el entrenamiento de las estrategias de equilibrio en sujetos crónicos con daño cerebral adquirido

    Full text link
    El equilibrio se define como el estado en el cual el centro de gravedad (CDG) del cuerpo se encuentra dentro de los límites de estabilidad. La gestión del equilibrio es un claro ejemplo del control motor humano, donde la información sensorial es procesada por el sistema nervioso central para generar la actividad muscular adecuada para producir los mecanismos de anticipación y/o compensación que preserven este estado. El equilibrio tiene una gran implicación en las actividades de la vida diaria, por lo que es fundamental para la independencia de los pacientes. Se define como daño cerebral adquirido (DCA) a toda aquella lesión que afecte a un cerebro sano hasta el momento del daño. El DCA es una de las patologías de mayor incidencia y prevalencia, siendo los ictus y los traumatismos craneoencefálicos una de las causas de mortalidad e incapacidad más elevadas de los países desarrollados. Las consecuencias de un DCA son muy heterogéneas tanto en intensidad como en naturaleza, por lo que cada paciente representa un único ejemplo de la patología. Desde el punto de vista motor, la lesión puede dañar las estructuras involucradas tanto en la transmisión como el procesamiento de la información impidiendo que se generen las eferencias adecuadas que controlen las respuestas motoras. Consecuencias como la hemiparesis (debilidad en un lado del cuerpo) son muy frecuentes y tienen un efecto devastador en el equilibrio de los pacientes. Estudios recientes han demostrado que lejos de tener un carácter estático, el cerebro está en constante cambio. Los mecanismos de plasticidad cerebral posibilitan que las neuronas vecinas a una zona dañada tras un DCA puedan adquirir parte de la función que éstas tenían. Las estrategias de neurorrehabilitación actuales pretenden desde un punto de vista holístico, aprovechar los mecanismos de plasticidad cerebral y aprendizaje motor humano para recuperar o compensar las funciones perdidas. Uno de los primeros objetivos desde el punto de vista fisioterapéutico es la recuperación jerárquica del equilibrio y el control postural. La realidad virtual (RV) se define como la sustitución de estímulos reales en los canales sensoriales por estímulos sintéticos. De esta manera es posible sumergir a los usuarios en entornos virtuales que proporcionen experiencias similares a las reales pero modificadas con un determinado objetivo. Existe un creciente número de estudios que reportan los beneficios derivados del uso de RV en rehabilitación, lo cual se conoce como rehabilitación virtual (RHBV). La RHBV ha demostrado proporcionar beneficios frente a las terapias convencionales, permitiendo inducir una reorganización cortical que maximice la mejoría locomotora. Las técnicas de valoración del equilibrio permiten cuantificar el estado de los pacientes que han sufrido un DCA. Las escalas clínicas tradicionales proporcionan información funcional de dicha capacidad. Los estudios posturográficos mediante plataformas de fuerzas intentar cuantificar las respuestas del CDG en determinadas condiciones. La hipótesis de este trabajo es: por una parte, que es posible proporcionar mejorías clínicas significativas a pacientes con DCA frente a terapias convencionales mediante el uso de RV; por otra parte, que es posible cuantificar el equilibrio de dichos pacientes mediante técnicas de análisis de señal aplicadas al CDG; y de manera transversal, que los sistemas de interacción de bajo coste que se utilizarán en las verificaciones de estas hipótesis tienen un funcionamiento comparable a los dispositivos tradicionales.Llorens Rodríguez, R. (2014). Intervenciones basadas en realidad virtual para el entrenamiento de las estrategias de equilibrio en sujetos crónicos con daño cerebral adquirido [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43772TESISPremios Extraordinarios de tesis doctorale

    Desarrollo de un Módulo de Tratamiento de Imagen para Sistemas de Imagen Dental

    Full text link
    Este trabajo resume los desarrollos llevados a cabo sobre reducción de artefactos metálicos y de segmentación de tejidos mandibulares que salen al paso de las limitaciones de los sistemas de imagen dental actuales. Los métodos propuestos han sido evaluados analíticamente obteniendo resultados satisfactorios respecto al estado del arte actual, hecho que ha dado lugar a un número considerable de publicaciones científicas.Lloréns Rodríguez, R. (2011). Desarrollo de un Módulo de Tratamiento de Imagen para Sistemas de Imagen Dental. http://hdl.handle.net/10251/28047.Archivo delegad

    Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial

    Full text link
    [EN] BACKGROUND: Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. AIM: The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. DESIGN: A randomized controlled trial. SETTING: Rehabilitative outpatient unit. POPULATION: A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). METHODS: Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. RESULTS: Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. CONCLUSIONS: In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. CLINICAL REHABILITATION IMPACT: MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.The study presented in the manuscript was conducted under the PhD Program in Medicine of the Universitat Autonoma de Barcelona and was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R and Project REACT, TIN2014-61975-EXP) and by Universitet Politecnica de Valencia (Grant PAID-10-14).Colomer, C.; Noe, E.; Llorens Rodríguez, R. (2016). Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine. 52(3):271-278. http://hdl.handle.net/10251/82408S27127852

    Evolution of spatial ability in freshman engineering students: a comparison between 2012 and 2019 cohorts

    Full text link
    [EN] This study makes a comparison between the level of spatial skills of freshman students enrolled on the Bachelor's Degree in Industrial Engineering at Universitat Politècnica de Valencia (Spain) between the years 2012 and 2019 measured using the Mental Rotations Test (MRT) and the Differential Aptitude Test: Space Relations subset (DAT:SR). Spatial skills are a determining factor for success in technical studies, so it is important to know how the level of these skills has evolved over time for new students arriving at the University. The article presents an introduction to the field of spatial skills and how they are usually evaluated, and present the results obtained from a sample of 55 students in 2012 and 158 in the 2019 course. Online versions of the MRT and DAT:SR were administered to investigate how the performance of the students evolved throughout the execution of the test. A notable worsening in the success rate was evidenced as the test progressed in both cohorts. Results showed comparable mean scores in the DAT:SR in both cohorts and a slightly better performance in the MRT for the 2019 cohort.This work has been funded by Vicerrectorado de Estudios, Calidad y Acreditación of Universitat Politècnica de València (Valencia, Spain).Llorens Rodríguez, R.; Contero, M.; Alcañiz Raya, ML. (2020). Evolution of spatial ability in freshman engineering students: a comparison between 2012 and 2019 cohorts. IATED Academy. 7172-7179. https://doi.org/10.21125/edulearn.2020.1844S7172717

    Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke

    Full text link
    [EN] Background: Gait is usually assessed by clinical tests, which may have poor accuracy and be biased, or instrumented systems, which potentially solve these limitations at the cost of being time-consuming and expensive. The different versions of the Microsoft Kinect have enabled human motion tracking without using wearable sensors at a low-cost and with acceptable reliability. This study aims: First, to determine the sensitivity of an open-access Kinect v2-based gait analysis system to motor disability and aging; Second, to determine its concurrent validity with standardized clinical tests in individuals with stroke; Third, to quantify its inter and intra-rater reliability, standard error of measurement, minimal detectable change; And, finally, to investigate its ability to identify fall risk after stroke. Methods: The most widely used spatiotemporal and kinematic gait parameters of 82 individuals post-stroke and 355 healthy subjects were estimated with the Kinect v2-based system. In addition, participants with stroke were assessed with the Dynamic Gait Index, the 1-min Walking Test, and the 10-m Walking Test. Results: The system successfully characterized the performance of both groups. Significant concurrent validity with correlations of variable strength was detected between all clinical tests and gait measures. Excellent inter and intra-rater reliability was evidenced for almost all measures. Minimal detectable change was variable, with poorer results for kinematic parameters. Almost all gait parameters proved to identify fall risk. Conclusions: Results suggest that although its limited sensitivity to kinematic parameters, the Kinect v2-based gait analysis could be used as a low-cost alternative to laboratory-grade systems to complement gait assessment in clinical settings.This study was funded by project VALORA, grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain), and grant "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia" (Valencia, Spain).Latorre, J.; Colomer, C.; Alcañiz Raya, ML.; Llorens Rodríguez, R. (2019). Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. Journal of NeuroEngineering and Rehabilitation. 16:1-11. https://doi.org/10.1186/s12984-019-0568-yS11116Balaban B, Tok F. Gait disturbances in patients with stroke. PM&R. 2014;6(7):635–42.Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil. 2001;7(4):1–18.Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress Neurobiol. 2004;73:61–72.An S, Lee Y, Shin H, Lee G. Gait velocity and walking distance to predict community walking after stroke. Nurs Health Sci. 2015;17(4):533–8.Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci. 2016;47:197–208.Kobsar D, Olson C, Paranjape R, Hadjistavropoulos T, Barden JM. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture. 2014;39(1):553–7.Almarwani M, Perera S, VanSwearingen JM, Sparto PJ, Brach JS. The test–retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait Posture. 2016;44:94–9.Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A. Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study. J Neurol Neurosurg Psychiatry. 2003;74(3):317–21Lipskaya-Velikovsky L, Zeilig G, Weingarden H, Rozental-Iluz C, Rand D. Executive functioning and daily living of individuals with chronic stroke. Int J Rehabil Res. 2018;41(2):122–7.Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–42.Sudarsky L. Gait disorders: prevalence, morbidity, and etiology. Adv Neurol. 2001;87:111–7.Salbach NM, O’Brien KK, Brooks D, Irvin E, Martino R, Takhar P, et al. Reference values for standardized tests of walking speed and distance: a systematic review. Gait Posture. 2015;41(2):341–60.Mancini M, King L, Salarian A, et al. Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. 2011. p. 007.Menz HB, Latt MD, Tiedemann A, Kwan MMS, Lord SR. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5.Hansen AH, Childress DS, Meier MR. A simple method for determination of gait events. J Biomech. 2002;35(1):135–8.Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE Journal of Biomedical and Health Informatics; 2016.Sprager S, Juric M. Inertial sensor-based gait recognition: a review. Sensors. 2015;15(9):22089–127.Lloréns R, Noé E, Naranjo V, Borrego A, Latorre J, Alcañiz M. Tracking Systems for Virtual Rehabilitation: objective performance vs. Subjective Experience A Practical Scenario. Sensors. 2015;15(3):6586–606.Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A. Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review. Bosn J Basic Med Sci. 2012;12(3):193.Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gait analysis. Phys Ther. 1985;65(7):1027–33.Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–5.Springer S, Yogev SG. Validity of the Kinect for gait assessment: a focused review. Sensors. 2016;16(2):194.Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, McGaw R, et al. Reliability and concurrent validity of the Microsoft Xbox one Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3.Gonzalez-Jorge H, Rodríguez-Gonzálvez P, Martínez-Sánchez J, González-Aguilera D, Arias P, Gesto M, et al. Metrological comparison between Kinect i and Kinect II sensors. Meas J Int Meas Confed. 2015;70:21–6.Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38(9):952–8.Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, et al. Gait assessment using the Microsoft Xbox one Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48(10):2166–70.Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS One. 2015;10(10):e0139913.Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83.Auvinet E, Multon F, Aubin CE, Meunier J, Raison M. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture. 2015;41(2):722–5.Dolatabadi E, Taati B, Mihailidis A. An automated classification of pathological gait using unobtrusive sensing technology. IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2336–46.Latorre J, Llorens R, Colomer C, Alcañiz M. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. J Biomech. 2018;72:268–73.Green J, Forster A, Young J. Reliability of gait speed measured by a timed walking test in patients one year after stroke. Clin Rehabil. 2002;16(3):306–14.Romero M, Sánchez A, Marín C, Navarro MD, Ferri J, Noé E. Clinical usefulness of the Spanish version of the Mississippi aphasia screening test (MASTsp): validation in stroke patients. Neurología. 2012;27(4):216–24.Kinect hardware [Internet]. [cited 2017 Jul 19]. Available from: https://developer.microsoft.com/en-us/windows/kinect/hardwareLatorre J, Lloréns R, Noé. E. http://www.gait.upv.es [Internet]. 2018. Available from: http://www.gait.upv.esEltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7.Shumway-Cook A, Woollacott M. Motor control: theory and practical applications. 2nd ed. Int J Peadiatric. 1995.Jonsdottir J, Cattaneo D. Reliability and validity of the dynamic gait index in persons with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1410–5.McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744.Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82(1):9–13.Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 83 Suppl 2:S7–11.Evans JD. Straightforward statistics for the behavioral sciences. 1st ed. Brooks/Cole Pub. Co; 1996.Llorens R, Latorre J, Noe E, Keshner EA. A low-cost Wii Balance Board™-based posturography system: An efficacy study with healthy subjects and individuals with stroke. In: International Conference on Virtual Rehabilitation, ICVR. 2015. 80–5.Simpson LA, Miller WC, Eng JJ. Effect of Stroke on Fall Rate, Location and Predictors: A Prospective Comparison of Older Adults with and without Stroke. PLoS One. 2011;6(4):e19431.Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74.Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59.Bohannon RW, Williams Andrews A. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–9.Perry J. Gait Analysis - Normal and Pathological Function. Book by SLACKIncorporated; 1992. p. 1–19.Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev. 1993;30(2):210–23.Wang C-Y, Lin Y-H, Chen T-R, Liu M-H, Chen Y-C. Gait speed measure: the effect of different measuring distances and the inclusion and exclusion of acceleration and deceleration. Percept Mot Skills. 2012;114(2):469–78.Murray MP, Kory RC, Clarkson BH, Sepic SB. Comparison of free and fast speed walking patterns of normal men. Am J Phys Med. 1966;45(1):8–23.Samson MM, Crowe A, de Vreede PL, Dessens JAG, Duursma SA, HJJ V. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res. 2001;13(1):16–21.Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–6.Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43.Boudarham J, Roche N, Pradon D, Bonnyaud C, Bensmail D, Zory R. Variations in kinematics during clinical gait analysis in stroke patients. PLoS One. 2013;8(6):e66421.Chisholm AE, Makepeace S, Inness EL, Perry SD, McIlroy WE, Mansfield A. Spatial-temporal gait variability Poststroke: variations in measurement and implications for measuring change. Arch Phys Med Rehabil. 2014;95(7):1335–41.Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4(2):136–48.Vernon S, Paterson K, Bower K, Mcginley J, Miller K, Pua Y, et al. Quantifying individual components of the timed up and go using the Kinect in people living with stroke. Neurorehabil Neural Repair. 2015;29(1):48–53.Clark RA, Vernon S, Mentiplay BF, Miller KJ, Mcginley JL, Pua YH, et al. Instrumenting gait assessment using the Kinect in people living with stroke: reliability and association with balance tests. J Neuroeng Rehabil. 2012;12:15.Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41(9):2021–5.McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil. 2001;82(3):419–25.Greenberg M, Gronley J, Perry J, Lawthwaite R. Concurrent Validity of Observational Gait Analysis Using the Vicon Motion Analysis System. Gait Posture. 1996;4:167–8.Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Disabil Rehabil. 1990;12(1):6–9.Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther. 1999;79(12):1122–33.Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL. Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. Physiother Theory Pract. 2014;30(3):183–8.Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–9.Meldrum D, Shouldice C, Conroy R, Jones K, Forward M. Test–retest reliability of three dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with bland and Altman plots. Gait Posture. 2014;39(1):265–71.Fulk GD, Echternach JL. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J Neurol Phys Ther. 2008;32:8–13.Bohannon RW, Andrews AW, Glenney SS. Minimal clinically important difference for comfortable speed as a measure of gait performance in patients undergoing inpatient rehabilitation after stroke. J Phys Ther Sci. 2013;25:1223–25.Tilson JK, Sullivan KJ, Cen SY, Rose DK, Koradia CH, Azen SP, et al. Meaningful gait speed improvement during the first 60 days Poststroke: minimal clinically important difference. Phys Ther. 2010;90(2):196–208. Fulk GD, Ludwig M, Dunning K, Golden S, Boyne P, West T. Estimating clinically important change in gait speed in people with stroke undergoing outpatient rehabilitation. J Neurol Phys Ther. 2011;35(2):82–89.Breisinger TP, Skidmore ER, Niyonkuru C, Terhorst L, Campbell GB. The stroke assessment of fall risk (SAFR): predictive validity in inpatient stroke rehabilitation. Clin Rehabil. 2014;28(12):1218–24.Ashburn A, Hyndman D, Pickering R, Yardley L, Harris S. Predicting people with stroke at risk of falls. Age Ageing. 2008;37(3):270–6.Bergamini E, Iosa M, Belluscio V, Morone G, Tramontano M, Vannozzi G. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. J Biomech. 2017;61:208–15.Colagiorgio P, Romano F, Sardi F, Moraschini M, Sozzi A, Bejor M, et al. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2014. 3500–3503

    Evaluation of a Low-Cost Virtual Reality Surround-Screen Projection System

    Get PDF
    [EN] Two of the most popular mediums for virtual reality are head-mounted displays and surround-screen projection systems, such as CAVE Automatic Virtual Environments. In recent years, HMDs suffered a significant reduction in cost and have become widespread consumer products. In contrast, CAVEs are still expensive and remain accessible to a limited number of researchers. This study aims to evaluate both objective and subjective characteristics of a CAVE-like monoscopic low-cost virtual reality surround-screen projection system compared to advanced setups and HMDs. For objective results, we measured the head position estimation accuracy and precision of a low-cost active infrared (IR) based tracking system, used in the proposed low-cost CAVE, relatively to an infrared marker-based tracking system, used in a laboratory-grade CAVE system. For subjective characteristics, we investigated the sense of presence and cybersickness elicited in users during a visual search task outside personal space, beyond arms reach, where the importance of stereo vision is diminished. Thirty participants rated their sense of presence and cybersickness after performing the VR search task with our CAVE-like system and a modern HMD. The tracking showed an accuracy error of 1.66 cm and .4 mm of precision jitter. The system was reported to elicit presence but at a lower level than the HMD, while causing significant lower cybersickness. Our results were compared to a previous study performed with a laboratory-grade CAVE and support that a VR system implemented with low-cost devices could be a viable alternative to laboratory-grade CAVEs for visual search tasks outside the users personal space.This work was supported by the Fundação para a Ciência e Tecnologia through the AHA project (CMUPERI/HCI/0046/2013), by the INTERREG program through the MACBIOIDI project (MAC/1.1.b/098), LARSyS (UIDB/50009/2020), NOVA-LINCS (UID/CEC/04516/2019), by Fundació la Marató de la TV3 (201701-10), and the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029)Gonçalves, A.; Borrego, A.; Latorre, J.; Llorens Rodríguez, R.; Bermúdez, S. (2021). Evaluation of a Low-Cost Virtual Reality Surround-Screen Projection System. IEEE Transactions on Visualization and Computer Graphics. 1-12. https://doi.org/10.1109/TVCG.2021.3091485S11

    Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals

    Full text link
    [EN] Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6¿5.5 cm/s), stride length (2.5¿5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60¿90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools.This work was supported by Universitat Politecnica de Valencia (Grant PAID-10-16) and Fundacio La Marato de la TV3 (Project VALORA).Latorre, J.; Llorens Rodríguez, R.; Colomer, C.; Alcañiz Raya, ML. (2018). Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Journal of Biomechanics. 72:268-273. https://doi.org/10.1016/j.jbiomech.2018.03.008S2682737

    Validity and sensitivity of instrumented postural and gait assessment using low-cost devices in Parkinson's disease

    Full text link
    [EN] Background Accurate assessment of balance and gait is necessary to monitor the clinical progress of Parkinson's disease (PD). Conventional clinical scales can be biased and have limited accuracy. Novel interactive devices are potentially useful to detect subtle posture or gait-related impairments. Methods Posturographic and single and dual-task gait assessments were performed to 54 individuals with PD and 43 healthy controls with the Wii Balance Board and the Kinect v2 and the, respectively. Individuals with PD were also assessed with the Tinetti Performance Oriented Mobility Assessment, the Functional Gait Assessment and the 10-m Walking Test. The influence of demographic and clinical variables on the performance in the instrumented posturographic and gait tests, the sensitivity of these tests to the clinical condition and phenotypes, and their convergent validity with clinical scales were investigated. Results Individuals with PD in H&Y I and I.5 stages showed similar performance to controls. The greatest differences in posture and gait were found between subjects in H&Y II.5 and H&Y I-I.5 stage, as well as controls. Dual-tasking enhanced the differences among all groups in gait parameters. Akinetic/rigid phenotype showed worse postural control and gait than other phenotypes. High significant correlations were found between the limits of stability and most of gait parameters with the clinical scales. Conclusions Low-cost devices showed potential to objectively quantify posture and gait in established PD (H&Y >= II). Dual-tasking gait evaluation was more sensitive to detect differences among PD stages and compared to controls than free gait. Gait and posture were more impaired in akinetic/rigid PD.This study has been funded by project VALORA, Grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain) and the European Union through the Operational Program of the European Regional Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029) to RL, and Alter Laboratories SA to PP.Álvarez, I.; Latorre, J.; Aguilar, M.; Pastor, P.; Llorens Rodríguez, R. (2020). Validity and sensitivity of instrumented postural and gait assessment using low-cost devices in Parkinson's disease. Journal of NeuroEngineering and Rehabilitation. 17(1):1-10. https://doi.org/10.1186/s12984-020-00770-7S110171Nussbaum RL, Ellis CE. Alzheimer’s Disease and Parkinson’s Disease. N Engl J Med. 2003;13:56–64.Hass CJ, Malczak P, Nocera J, Stegemöller EL, Shukala A, Malaty I, et al. Quantitative normative Gait data in a large cohort of ambulatory persons with parkinson’s disease. PLoS ONE. 2012;2:12.Hass CJ, Bishop M, Moscovich M, Stegemöller EL, Skinner J, Malaty IA, et al. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J Neurol Phys Ther. 2014;38:233–8.Koh S, Park K, Lee D. Gait analysis in patients with Parkinson ’ s disease: relationship to clinical features and freezing. J Mov Disord. 2008;1:6.Nanhoe-Mahabier W, Snijders AH, Delval A, Weerdesteyn V, Duysens J, Overeem S, et al. Walking patterns in Parkinson’s disease with and without freezing of gait. Neuroscience. 2011;182:217–24. https://doi.org/10.1016/j.neuroscience.2011.02.061.Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Park Relat Disord. 2019;62:28–35.Panyakaew P, Bhidayasiri R. The spectrum of preclinical gait disorders in early Parkinson’s disease: Subclinical gait abnormalities and compensatory mechanisms revealed with dual tasking. J Neural Transm. 2013;120:1665–72.Bloem BR, Marinus J, Almeida Q, Dibble L, Nieuwboer A, Post B, et al. Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: Critique and recommendations. Mov Disord. 2016;31:1342–55.Delval A, Snijders AH, Weerdesteyn V, Duysens JE, Defebvre L, Giladi N, et al. Objective detection of subtle freezing of gait episodes in Parkinson’s disease. Mov Disord. 2010;25:1684–93. https://doi.org/10.1002/mds.23159.Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol Ser A Biol Sci Med Sci. 2009;64A:896–901.Schlachetzki JCM, Barth J, Marxreiter F, Gossler J, Kohl Z, Reinfelder S, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE. 2017;12:1–18.Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13:1–10. https://doi.org/10.1186/s12984-016-0136-7.Micó-Amigo ME, Kingma I, Faber GS, Kunikoshi A, van Uem JMT, van Lummel RC, et al. Is the assessment of 5 meters of gait with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-associated gait? Ann Biomed Eng. 2017;45:1266–78.Rovini E, Maremmani C, Cavallo F. How wearable sensors can support parkinson’s disease diagnosis and treatment: a systematic review. Front Neurosci. 2017;9:12.Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J Biomed Health Inform. 2016;9:1521–37.Díaz S, Stephenson JB, Labrador MA. Use of wearable sensor technology in gait, balance, and range of motion analysis. Appl Sci. 2020;10(1):234.Park DS, Lee G. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation. J Neuroeng Rehabil. 2014;11:99.Holmes JD, Jenkins ME, Johnson AM, Hunt MA, Clark RA. Validity of the Nintendo Wii balance board for the assessment of standing balance in Parkinson’s disease. Clin Rehabil. 2013;27:361–6.Llorens R, Latorre J, Noé E, Keshner EA. Posturography using the Wii Balance BoardTM. A feasibility study with healthy adults and adults post-stroke. Gait Posture. 2016;43:228–32.Bower KJ, McGinley JL, Miller KJ, Clark RA. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: Reliability and association with clinical tests. PLoS ONE. 2014;9:32321.Eltoukhy M, Kuenze C, Andersen MS, Oh J, Signorile J. Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model. Med Eng Phys. 2017;50:75–82.Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7.Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38:952–8.Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, et al. Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48:2166–70.Cao Y, Li BZ, Li QN, Xie JD, Cao BZ, Yu SY. Kinect-based gait analyses of patients with Parkinson’s disease, patients with stroke with hemiplegia, and healthy adults. CNS Neurosci Ther. 2017;9:447–9.Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39:1062–8.Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19:1020–8.Escribano-Aparicio MV, Pérez-Dively M, García-García FJ, Pérez-Martín A, Romero L, Ferrer G, et al. Validación del MMSE de Folstein en una población española de bajo nivel educativo1. Rev Esp Geriatr Gerontol. 1999;34:319–26.Latorre J, Colomer C, Alcañiz M, Llorens R. Gait analysis with the Kinect v2: Normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J Neuroeng Rehabil. 2019;16:12.Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83. https://doi.org/10.1016/j.gaitpost.2016.10.001.Rajput AH, Voll A, Rajput ML, Robinson CA, Rajput A. Course in parkinson disease subtypes: a 39-year clinicopathologic study. Neurology. 2009;73:206–12.Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O. Globus pallidus dopamine and Parkinson motor subtypes: Clinical and brain biochemical correlation. Neurology. 2008;70(16 Pt 2):1403–10.Fahn S. Unified Parkinson’s disease rating scale. Recent Dev Park Dis. 1987;2:153–64.Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a Brief Clinical Form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci. 2000;12:233–9. https://doi.org/10.1176/jnp.12.2.233.Chaudhuri KR, Martinez-Martin P, Brown RG, Sethi K, Stocchi F, Odin P, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007;22:1901–11.Christenson GA, Faber RJ, De Zwaan M, Raymond NC, Specker SM, Ekern MD, et al. Compulsive buying: descriptive characteristics and psychiatric comorbidity. J Clin Psychiatry. 1994;55:5–11.Peto V, Jenkinson C, Fitzpatrick R, Greenhall R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual life Res. 1995;4:241–8.Lang JT, Kassan TO, Devaney LL, Colon-Semenza C, Joseph MF. Test-retest reliability and minimal detectable change for the 10-meter walk test in older adults with Parkinson’s disease. J Geriatr Phys Ther. 2016;39:165–70.Woodhull-McNeal AP. Changes in posture and balance with age. Aging Clin Exp Res. 1992;4:219–25.Terrier P, Reynard F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41:170–4.Bohannon RW, Williams AA. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–9.Elbaz A, Artaud F, Dugravot A, Tzourio C, Singh-Manoux A. The gait speed advantage of taller stature is lost with age. Sci Rep. 2018;8:12.Laroche DP, Marques NR, Shumila HN, Logan CR, Laurent RS, Goncąlves M. Excess body weight and gait influence energy cost of walking in older adults. Med Sci Sports Exerc. 2015;47:1017–25.Stylianou AP, McVey MA, Lyons KE, Pahwa R, Luchies CW. Postural sway in patients with mild to moderate parkinson’s disease. Int J Neurosci. 2011;121:614–21.Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Park Relat Disord. 2011;17:557–62.Morris M, Iansek R, Smithson F, Huxham F. Postural instability in Parkinson’s disease: a comparison with and without a concurrent task. Gait Posture. 2000;12:205–16.Schoneburg B, Mancini M, Horak F, Nutt JG. Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord. 2013;89:1474–82.Doná F, Aquino CC, Gazzola JM, Borges V, Silva SMCA, Ganança FF, et al. Changes in postural control in patients with Parkinson’s disease: a posturographic study. Physiother. 2016;102:272–9.Rossi M, Soto A, Santos S, Sesar A, Labella T. A Prospective Study of Alterations in Balance among Patients with Parkinson’s Protocol of the Postural Evaluation. Eur Neurol. 2009;11:171–6.Ganesan M, Kumar P, Gupta A, Sathyaprabha TN. Dynamic posturography in evaluation of balance in patients of Parkinson ’ s disease with normal pull test : Concept of a diagonal pull test q. Park Relat Disord. 2010;16:595–9. https://doi.org/10.1016/j.parkreldis.2010.08.005.Kim SM, Kim DH, Yang Y, Ha SW, Han JH. Gait Patterns in Parkinson’s Disease with or without Cognitive Impairment. Dement Neurocognitive Disord. 2018;17:57.Galletly R, Brauer SG. Does the type of concurrent task affect preferred and cued gait in people with Parkinson’s disease? Aust J Physiother. 2005;51:175–80.O’Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002;82:888–97.Penko AL, Streicher MC, Koop MM, Dey T, Rosenfeldt AB, Bazyk AS, et al. Dual-task interference disrupts parkinson’s gait across multiple cognitive domains. Neuroscience. 2018;379:375–82.Yogev-seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23:329–42.Giladi GYN. The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res. 2013;226:81–93.Micó-Amigo ME, Kingma I, Heinzel S, Nussbaum S, Heger T, van Lummel RC, et al. Dual vs single tasking during circular walking: what better reflects progression in Parkinson’s disease? Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.00372/full.Duncan RP, Combs-Miller SA, McNeely ME, Leddy AL, Cavanaugh JT, Dibble LE, et al. Are the average gait speeds during the 10 meter and 6 minute walk tests redundant in Parkinson disease? Gait Posture. 2017;52:178–82.Robles-García V, Corral-Bergantiños Y, Espinosa N, Jácome MA, García-Sancho C, Cudeiro J, et al. Spatiotemporal gait patterns during overt and covert evaluation in patients with Parkinson’s disease and healthy subjects: Is there a Hawthorne effect? J Appl Biomech. 2015;31:189–94.Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, et al. Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov Disord. 2016;31:1527–34.Ospina BM, Chaparro JAV, Paredes JDA, Pino YJC, Navarro A, Orozco JL. Objective arm swing analysis in early-stage Parkinson’s disease using an RGB-D Camera (Kinect ®). J Parkinsons Dis. 2018;8:563–70.Song J, Sigward S, Fisher B, Salem GJ. Altered dynamic postural control during step turning in persons with early-stage Parkinson’s disease. Parkinsons Dis. 2012. https://doi.org/10.1155/2012/386962.Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13:428–37.Lamberti P, Armenise S, Castaldo V, De Mari M, Iliceto G, Tronci P, et al. Freezing gait in parkinson’s disease. Eur Neurol. 1997;38:297–301.Thenganatt MA, Jankovic J. Parkinson disease subtypes JAMA Neurol. 2014;71:499–504.Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41:2021–5.McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation. Arch Phys Med Rehabil. 2001;82:419–25.Greenberg M, Gronley J, Perry J, Lawthwaite R. Concurrent validity of observational gait analysis using the vicon motion analysis system. Gait Posture. 1996;4:167–8

    Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial - The authors respond

    Full text link
    Response to the letter "Effectiveness, Usability, and Cost-Benefit of a Virtual Reality-Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial" by Lise Worthen-Chaudhari https://dx.doi.org/10.1016/j.apmr.2015.03.025 a letter on "Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial". Archives of Physical Medicine and Rehabilitation. 96(3):418-425. doi:10.1016/j.apmr.2014.10.019. http://hdl.handle.net/10251/63762Llorens Rodríguez, R.; Noé Sebastián, E.; Colomer, C.; Alcañiz Raya, ML. (2015). Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial - The authors respond. Archives of Physical Medicine and Rehabilitation. 96(8):1544-1547. doi:10.1016/j.apmr.2015.04.006S1544154796
    corecore